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Abstract 
 
 
 
In this experiment, we will use elastic and quasi-elastic neutron scattering to examine the 
methyl rotations in octamethyl-POSS. The goal of this hands-on measurement is to gain 
an understanding and appreciation of backscattering spectroscopy, get practical 
experience in obtaining the elastic and quasi-elastic data, reduce, analyze and interpret a 
set of these data.  
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I. Introduction 
 
Polyoligosilsesquioxanes (POSS) are molecules composed of silicon-oxygen cage in 
which Si atoms occupy the corners of a cube and oxygen atoms are located on the edges. 
Each Si atom is bonded to three oxygen atoms but may have any one of a wide variety of 
potential ligands attached to the fourth position. The choice of ligands provides many 
useful properties, including selective solubility in organic or aqueous solvents, the ability 
to be dispersed in a number of polymers, and specific chemical reactivity that can be used 
to directly incorporate the POSS molecule into the polymer backbones or side groups. 
POSS can also be used as a small, perfectly monodisperse nanoparticle with diameter of 
the order of a few nm (see below). 
 
 
 
 
 
 
 
 
 
 
 
 
 
The influence of choice of ligand on POSS molecule can be seen through their sample 
form at room temperature. In pure state, POSS exists as amorphous solid, crystalline 
solids and even as liquid depending upon the ligand attached to Si atoms. Larger and 
flexible ligands tend to discourage crystallization and lower the POSS melting 
temperature while smaller ligands generally enhance crystallization in POSS molecules 
[1]. The smallest possible POSS would be where R in the above is replaced with simple 
hydrogen.  
 
In this experiment, we will investigate motions in octamethyl-POSS (M-POSS) where R 
is substituted with a methyl group using quasi-elastic neutron scattering. M-POSS is a 
crystalline material at room temperature and appears white. M-POSS is known to sublime 
at around 473K. Therefore, we intend to perform all measurements at lower temperatures. 

 
II. Why study M-POSS using Neutron Backscattering? 

 
As stated above, POSS molecules have a wide variety of applications including their use 
as nanoparticles for polymer nanocomposites. For such applications, knowledge of 
dynamical modes is desirable, as ligands are known to facilitate solubility and good 
nanoparticle dispersion in polymer seems to be related with ligand dynamics. As the 
ligand conformational energy barriers generally have significant intermolecular 
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component, we expect the ligand dynamics and vibrational transition energies to be 
sensitive to the interactions between the POSS molecules and the polymer chains.  
 
Why neutron backscattering - the answer has to do with the suitability of the length and 
time scales associated with the dynamics in these systems. As we all know, momentum 
transfer Q is inversely related with length scales under investigation. So, we can consider 
Q as the power of our microscope that we are using to probe the dynamical properties of 
M-POSS. The Q values covered by HFBS (0.25Å-1 – 1.8Å-1) correspond to length scales 
of 35Å to 4Å and are suitable to study methyl group rotations.  
 
Furthermore, by varying the contrast between the structural units or molecular groups, 
complex systems may be selectively studied. In particular, the large contrast achieved by 
isotopic substitution of hydrogen by deuterium constitutes the most powerful tool for 
deciphering complex structures and dynamic processes in these materials. To give you an 
idea here are some of the incoherent (and coherent) scattering cross sections for common 
elements: H: 80.5 (1.75) barns, D: 2.0 (5.5) barns, C: 0.0 (5.5) barns, O: 0.0 (4.2) barns 
and Si:0.0 (2.16). As the incoherent cross section of hydrogen is much larger, the total 
scattering observed in a quasi-elastic neutron scattering (QENS) experiment will be 
dominated heavily by incoherent scattering from hydrogen in the sample.  

 

III. Experimental Plan and Sample Environment 
   

 
M-POSS is a crystalline material which can be obtained commercially. This particular 
sample was bought from Hybrid Plastics and used as is. About 0.4g powder was put in an 
aluminum pouch and rolled to make a thin film of M-POSS. The film is then rolled into 
an annulus (cylinder) and inserted into the sample can, which was sealed with indium 
under helium to have an excellent heat transfer. The annular geometry was selected to 
minimize the amount of corrections necessary in the data reduction. If the sample is too 
thick, then a significant number of the neutrons may get absorbed. This self-shielding 
depends on the absorption cross-section of the sample as well as the geometry. For an 
annular geometry where the neutron sees only a thin portion of the sample, the 
corrections are negligible. Another concern when determining sample design is 
minimization of multiple scattering. In an ideal neutron scattering measurement, we 
would like for the neutron to scatter once within the sample before reaching the detector. 
In practice, the neutrons can undergo several scattering events within the sample and/or 
be absorbed by the sample. The number of events increases with the thickness of the 
sample illuminated by the beam. One often used rule-of-thumb is to design sample 
geometry where 90% of the incident neutrons are transmitted in the forward direction. 
This is a good compromise between signal and the effects of multiple scattering. Such a 
sample is usually referred to as a 10% scatterer. Using the known scattering and 
absorption cross-sections for M-POSS and the geometry, one can calculate the desired 
thickness or the amount of material. For M-POSS in an annular cell the approximate 
sample for 90% transmission in the forward direction is 0.25 mm.  
 
Q: How many times does the beam go through the sample before 



4 
 

           reaching the detectors?  
 
The answer to the question posed above can have important consequences for your 
experiment. If the beam passes through the sample twice (for instance) and the sample 
has an appreciable neutron absorption cross-section, then the intensity at the detectors 
will be lower than if the beam had only passed once through the sample. Additionally, a 
beam which passes twice through a strongly scattering sample can produce an energy-
dependent background. For more details on these points, see Appendix A.  
 
The sample can will be placed in a top loading closed-cycle refrigerator capable of 
reaching a base temperature of 4 K. The measurements performed here will cover a 
temperature range of 4K -298K. We will use a low-T sample sticks to cover the entire 
temperature range. We will start with so-called “Fixed window scan” and scan the 
intensities from 298K to 4K. Resolution measurements will be made in quasi-elastic 
mode at 4K followed by a number of quasi-elastic scans at different temperatures 
determined by fixed window scan. 

 

IV. Modes of Spectrometer and Data Reduction Details  
 

We can use HFBS spectrometer in two different modes to extract the dynamical features 
of the sample under investigation. 

 
A. Fixed Window Scans: 
 
For reactor based neutron backscattering spectrometers, “Fixed window scans” or “elastic 
scans” are very powerful for getting a fast overview of the dynamics of a system and are 
often the starting point for quasi-elastic measurements. In this mode, we choose to count 
the neutrons with fixed initial and final wave vectors which results in analyzing neutrons 
scattered within a fixed energy window. To do so, we stop the moving monochromator 
(see below) and then change the external parameters like temperature and pressure and 
record the intensity. We can even assign a time scale to fixed window scans based on the 
instrumental resolution. In our case, assuming a FWHM of about 0.8μeV, the slower 
limit would correspond to about 10ns. Dynamic processes on a time scale slower than the 
instrumental resolution are not resolved and thus are counted within the "elastic 
window". Faster motions of scattering particles can be resolved and will induce an energy 
loss or gain of the scattered neutrons, which then are no longer reflected by the analyzers 
to the detectors. One observes a decrease of the elastic window intensity as function of 
increasing temperature. Therefore, elastic or fixed window scans give a quick overview 
of the onset of motions faster than the time scale corresponding to the energy resolution 
(~10 ns) and therefore, can be used to choose suitable temperatures for dynamic 
measurements.  

 
B. Quasi-elastic Neutron Scattering: 
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The HFBS spectrometer is configured in an inverse scattering geometry. This means that 
the energy of the neutron incident on the sample is varied while the final energy of the 
neutrons reaching the detectors is fixed.  
A summary of the basic principle of operation of HFBS is outlined below (for more 
details on the instrument including a schematic see Appendix B)  
 
1.   The “white” beam of neutrons produced by the reactor is velocity selected to yield 

neutrons that have energies around the desired energy of 2.08 meV.  These 
neutrons are further focused in energy by a rotating phase space transform 
chopper and scattered towards the Doppler monochromator. The energy focused 
neutrons are backscattered from the Doppler monochromator thus selecting 
incident neutron energies, E

i
, dependent upon the speed of the monochromator 

when reflected. While the Doppler is at rest, only neutrons with energies of 2.08 
meV are backscattered from the monochromator. This is due to the lattice spacing 
of the Si hexagons that tile the surface of the monochromator.  

 
2. The reflected neutrons from monochromator interact with the sample and are 

scattered from the sample with a distribution of energies.  
 

3.  Only neutrons with a particular scattered energy, E
f
, reflect from the analyzer 

array into the detectors. Identical Si hexagons comprise the analyzer system, thus 
the backscattered neutrons all have energies of 2.08 meV. The energy transfer 
imparted on the sample is defined as E=E

i
-E

f
.  

 
4.  Neutrons scattered from the sample in a particular direction backscatter from 

particular analyzers and are counted by one of the 16 detectors. This direction 
corresponds to the scattering angle, 2θ.  

 
Q:  What is the energy range of the neutrons incident on the sample, E

i
?  

 
Note: this next section will be conveyed using energy, wavelength and velocity. These values are generally 
constant for HFBS; the neutrons that reach the detectors have energies of 2.08 meV, wavelengths of 6.27 Å 
and velocities of 630.8 m/s.  
 

Given the scattering angle, 2θ, and energy transfer, E, we may calculate the magnitude of 
the momentum transfer delivered to the sample, Q. Kinematical arguments lead to the 
following relationship between 2θ, E, E

i
, and Q:  
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where m

n 
is the mass of the neutron and ħ is Planck's constant.  
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The data acquisition system records the number of detector counts as a function of initial 
neutron velocity, vi, where vi

 
is related to the instantaneous monochromator velocity, vm, 

and the Bragg velocity of the neutrons with velocity 630 m/s, vB, via vi=vB+vm. The 
energy transfer to the sample, due to a Doppler shift of the neutron energies, is given by,  
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where EB

 
is the Bragg energy of neutrons with wavelength 6.27 Å, is calculated and 

written to the raw data file. This calculation is done using an encoded Doppler drive that 
provides information as to the acceleration as a function of position. The energy change 
is derived from this acceleration. Note that the motion of the monochromator is time-

dependent, allowing the variation of Ei
 
necessary to an inverse geometry spectrometer.  

 
Q: Can you think of a way to change the incident neutron energies  
          without moving monochromator? 

 
The raw data measured is recorded as N(2θj,Ek)=Njk, the number of neutrons detected in 
detector j (at scattering angle corresponding to 2θj) with an energy transfer to sample of 
Ek. The quantity which reflects the dynamics of the scattering system most directly is 
S(Q,E=ħω), the dynamic structure factor. What we measure, Njk, is closely related to the 
partial differential cross-section, d2σ/dΩdE. This can be written in terms of the various 
instrument-dependent parameters and the number of counts received in the detectors,  
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where,  
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
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

FCN

FCA
: the monitor normalization of incident beam area (A) times the beam monitor 

efficiency (η(FC)) divided by the number of counts received by the beam monitor. (FC) 
indicates the type of detector, a fission chamber. 

 f

j

E


: the vanadium normalization of the detector intensity with the intensity scaling 

factor γj divided by the efficiency of the detector.   
ρN: number density of scatterers in the sample  
V: volume of sample illuminated by the beam  
ΔE: energy channel width or binning of the dynamic range 
ΔΩj: solid angle subtended by detector or analyzer angular coverage  
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We can obtain the dynamic structure function, S(Q,E), using the first Born approximation 
(i.e. a single scattering event dominates the response of the scattering system) via  
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where,  
σ: scattering cross-section  
k

i
: incident neutron wave vector  

k
f
: final neutron wave vector  

Note that for a sample in thermal equilibrium, the detailed balance condition is satisfied,  
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where E is the sample energy gain. This condition is a technical way of saying that it is 
more likely that a sample will give energy to the neutron when the sample is at a high 
temperature as compared to when the sample is at a low temperature. 

 

V. Understanding Quasi-elastic Neutron Spectra and 
Models 

 
The neutron intensity after correction gives the experimental scattering function Sexp(Q, 
ω) as a function of energy transfer (E=ħω). The theoretical scattering function S(Q, ω) 
which gives the dynamics of a general system in a quasielastic neutron scattering 
experiment is given by [2]  
 

Stheo(Q,ω) = f*{p1(Q)δ(ω) + p2SQE(Q,ω)} + SIN(Q,ω)                             
 
where f is just a scaling factor that describes the attenuation of scattering intensity as a 
result of temperature variation, p1 and p2 represents the elastic and quasi-elastic 
contribution to total scattering function. δ(ω) is Delta function corresponding to zero 
frequency. SQE(Q,ω) and SIN(Q,ω) are the quasi-elastic and inelastic incoherent scattering 
functions respectively. SIN(Q,ω) can also be used to describe the processes that are much 
faster than one’s instrument frequency window in the form of a flat background.  
 
The measured neutron spectra is always resolution broadened and therefore, it is 
important to remember that the above eq has to be convoluted with experimental 
resolution function before it can be fitted to experimental measured scattering function. 
The resolution function is the slowest possible scattering function that can be measured at 
a given instrument. For more details on resolution function, please see appendix C. We 
will use DAVE software to analyze fixed window scan and quasi-elastic data. More 
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details about DAVE software can be found at: http://www.ncnr.nist.gov/dave  As for 
scattering function, hereafter, we will talk only about theoretical scattering function. 

 
Q: Can we measure resolution function using our own sample for this  
          experiment? 

 
As noted above, hydrogenated sample of M-POSS will scatter incoherently and almost all 
the intensity will be incoherent in nature coming from 8 methyl groups. The incoherent 
intensity reveals the incoherent scattering function, Sinc(Q,ω), that is related via Fourier 
transformations to the intermediate incoherent scattering function, Sinc(Q,t), and with the 
self-part of the Van Hove correlation function, Gself(r,t). In the classical limit, Gself(r,t) is 
the probability of a given nucleus being at distance r from the position where it was 
located at a time t before. Thus, incoherent scattering looks at correlations between the 
positions of the same nucleus at different times. Therefore, in backscattering 
measurements, we observe a given particle’s self correlation function S(Q,t) in frequency 
domain and with its time (frequency) evolution, we can track how the molecule is 
diffusing in space (through Q dependence) and time. 

 
Theory of methyl group rotation: 
 
At very low temperatures, all diffusional motions are frozen in solids and only short 
range vibrations are present in which molecules vibrate around a fixed center of mass. A 
methyl group is best described by a pyramid composed of three hydrogen atoms at the 
base and a carbon atom at the apex with H-H distance which is usually around 1.5Å (see 
below). It has been established that below 30K or so if any quasi-elastic broadening 
occurs in the data over elastic line this normally corresponds to quantum rotational 
tunneling of methyl groups. In polymer system where a more complex dynamics occur 
broadening can be observed even below 30K, however this is not the case for solids. In 
the higher temperature range say 60K and above a more classic rotational motion appears 
as crossover from quantum to classic rotations occurs around 50K or so. The classic 
hopping rates of the hydrogens in the methyl groups can be determined by the Q- and 
temperature dependence of quasi-elastic broadening of the elastic line over resolution. 
For more details on quantum tunneling please see Ref.3.   

 
In the classic model, the interaction between methyl groups and surrounding environment 
is described by the single particle model. In this model methyl group is typically treated 
as rigid rotor whose rotation is hindered or influenced by the surrounding. The potential 
that hinders the reorientation depends on a singular coordinate θ which represents the 
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rotation angle of the methyl group with respect to its fixed environment. The total 
rotational potential energy can be determined using the symmetry of the methyl group as 
well as of the environment. 

 
 
A realistic model for methyl group rotation would be a 3-fold function as  
 

�(�) =
��
2
(1 − cos 3�) 

 
where V3 denotes the amplitude of the potential. The maxima of V(θ) represents the 
height of the barrier for the hopping process. This potential also determines the quantized 
torsional or librational levels. 
 
Q. Can we observe torsional and librational peaks in our experiment? Hint: V3 
 
We can use the torsional transition energies to determine the barrier height separating the 
equivalent methyl group orientations. If the torsional potential is composed of the 3-fold 
term as given above then the energy levels are given by the solutions of Schrodinger eq: 
 

���(�) = ����(�) 

 
where H is given by 

 

� = −
ℏ�

2�

��

���
+
��
2
(1 − ���3�) 

 
and the free rotor wave functions are given by 
 

��(�) =
1

√2�
�±��� 

Here I is the methyl rotational constant. The eq. above can be solved numerically and the 
eigenvalues for the rotational energy levels and resulting transition energies can be used 
to determine the value of the barrier height. This procedure yields V3 to be 74.4meV [4]. 
A plot of V(θ) against torsion angle can be seen below: 
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The activation energy is defined as the energy difference between the ground state 
torsional state and the top of the barrier. This way activation energy is always less than 
the barrier height. Also note these torsional energy levels are 3-fold degenerate. The 
degeneracy will be lifted by tunneling matrix elements between the potential energy wells 
to yield two levels for each torsional level. The tunnel splitting for the ground state is also 
given by above calculation and yields 0.1µev. 
 
Q. Do we expect to see any tunneling in this experiment? 

 
 
Symmetry of Methyl Groups: 
 
Neutron diffraction and X-ray has been used to determine crystal structure of M-POSS 
[4]. At 300K, M-POSS adopts a rhombohedral crystal structure with space group R-3, as 
shown in the figure below. Lattice constants are a=b=12.50Å and c=13.09Å. There are 3 
M-POSS molecules per crystallographic unit cell. As the unit cell has 3 M-POSS 
molecules understanding the symmetry of methyl groups in a molecule of M-POSS is 
important. Two of the eight methyl groups in an M-POSS molecule in the crystal lie on 
the hexagonal c axis and therefore have C3 symmetry while the other 6 methyl groups do 
not lie on symmetry axes or planes and therefore have C1 symmetry instead. These two 
methyl groups can be seen below where H1 atoms belong to the one with C3 symmetry 
while H2, H3 and H4 belong to the one with C1 symmetry. 
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Q: Do you expect any influence of symmetry on methyl rotations via neutron spectra?  

 
In the above Fig., (b) shows molecular structure at 12K while (c) shows the same at 
300K. Notice the large hydrogen atom anisotropic displacement due to the presence of 
large amplitude torsional motions of methyl group.  
 

 
Modeling of Dynamic Scattering function: 
 
Methyl group rotations can be modelled by a simple Lorentzian function which is given 
as follows: 
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Therefore, the total function to be fitted would be 
 

�(�, �) = � ∗ [���(�) + ���(�,�)]⨂�(�,�) 

 
where the key parameters are p1, p2 and Γ(Q). In the above eq. p1 and p2 represent 
fraction of elastic and quasi-elastic signal while Γ(Q) represent the full width at half 
maximum (FWHM) of quasi-elastic broadening.   
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The Elastic Incoherent Structure Factor (EISF): 
 
Quasi-elastic neutron scattering provides direct information about the geometry of the 
motion through Q dependence of the data. In order to access information about the 
motion, we need to calculate what is called EISF. The EISF is the fraction of the elastic 
signal over total signal which can be defined as 
 

��(�) =
��(�)

��(�) + ��(�)
 

 
 
The variation of EISF as a function of Q can provide us the exact geometry of methyl 
rotations. Symmetric methyl groups rotate around their C3 axes, where the hydrogen 
atoms for each methyl group are located on 3 sites equally spaced on a circle. The EISF 
has been calculated for a number of models[1]. The EISF for this model is 
 

�������(�) =
1 + 2��(��)

3
 

 
where r is the jump distance separating the hydrogen atoms undergoing the rotational 
diffusion and j0 is the spherical Bessel function of zeroth order. The above eq. can also be 
written as 
 

�������(�) =
1

3
�1 + 2

���(��)

��
� 

 
Q: Do you expect any temperature dependence of EISF? 
 

Q dependence of Full width at half maximum: 
 
 
The Q dependence of FWHM can be used to figure out how hydrogen atoms are moving 
in space. For example, in the simplest case of Brownian diffusion FWHM varies as Q2 
and proportionality constant is simply diffusion coefficient. In case of polymers, where 
chain connectivity “prevents” simple diffusion of hydrogen atoms, Q dependence is 
slightly more complex and found to be stronger than Q2. In case of geometrical 
confinement liquids are found to show weak Q dependence and tend to follow Qγ where γ 
is usually between zero and 2. A Q independent FWHM typically refers to a confined 
motion or geometrically restrictive motion on corresponding length scale. 
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Temperature Dependence of FWHM 
 
The rotational diffusion of methyl groups can be treated as thermally activated process 
that is best described by a simple Arrhenius eq. 
 
 

Γ(�) = Γ��
�� ���  

 
Where Γ0 is the attempt frequency and E is the rotational activation energy. The above eq. 
means if logarithm of FWHM is plotted against inverse of temperature, it should yield a 
simple linear plot. Typically methyl group rotation leads to activation energies that fall in 
the range of 50mev-80mev. 
 
Attempt frequency in the above eq. is another very important parameter and can give 
crucial information about the nature of the motion involved. In case of typical methyl 
rotation, attempt frequencies are generally found to be in the order of 2-5 meV. These 
values typically mean methyl rotation occurs nearly perfectly without any distortion or 
coupling.  
 
Q. Can you calculate expected activation energy of methyl rotation using potential 
energy plot? 
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Appendix A 
 
Effects of the Sample Geometry on Self Shielding and Multiple Scattering 
 
One must consider a number of issues when determining appropriate sample geometry. A 
naïve philosophy in designing sample geometry is to make the sample as big as possible in 
order to obtain as many scattering events in the shortest possible time. Unfortunately 
optimization of the experiment is not as simple as this. Sample design involves a careful 
consideration of the composition of the sample in terms of its scattering and absorption cross-
sections. 
 
In an inverse geometry spectrometer like HFBS where the beam passes through the sample 
twice one must consider self-shielding effects which reduce the intensity received at the 
detectors via absorption. In general absorption in the sample is proportional to the neutron 
wavelength. On a backscattering spectrometer using Si(111), Ei= 2.08 meV, λ= 6.27 Å, 
which results in the cross section for absorption being 3.5 times larger than for thermal 
neutrons with 1.8 Å. 
 
In order to understand the extent to which you have to correct for multiple scattering/self-
shielding it is important to know how strong a scatterer/absorber your sample is. The 
transmission in the forward direction (2θ = 0) is often calculated and expressed in terms 
of a percentage of the incident beam that is scattered/absorbed. For instance, a flat plate 
sample with total scattering cross-section, σ

tot 
= σ

inc
+σ

coh
, and absorption cross-section, σ

abs
, 

will have a scattering and absorption determined by 
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where 2θ is the angle of orientation of the slab with respect to the incident beam direction, d 
is the thickness of the slab sample, and μ is the scattering coefficient (inverse scattering 

length in cm
-1

) determined by 
 

                                                MN totAS /                                                                  A3 

  

                                                MN absAabs /                                                               A4 

 

where N
A 

is Avogadro’s number (6.022 × 10
23 

mole
-1

), ρ is the mass density of the sample 

material (in g/cc), and M is the molecular weight of the sample in g/mol. On the other hand 
an annular sample cell has a scattering/absorption in the forward direction determined by 
 

 dscattering s exp1                                   (annular cell)                                  A5 
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 dabsorption abs exp1                                (annular cell)                                  A6 

 
where the inverse scattering absorption lengths are calculated as described above (eqs. A3 
and A4) and d is the wall thickness of the annular sample. Equations (A5) and (A6) are good 
approximations for the cases where exp(-πμd) > 80%. 
 
We illustrate the self-shielding corrections for a vanadium sample (σs(1.8 Å) = 5.10 barn 
and σabs(1.8 Å) = 5.08 barn [A1]) for two different geometries: a flat plate and an annular 
sample. The intensity in the detectors is very sensitive to the thickness of the sample as 
well as its geometry. If we assume these two geometries for the same amount of scattering 
(5%, 10%, and 20% scatterers respectively as calculated via (A1) and (A5)) and assume that 
the samples are completely illuminated by the incident beam then we obtain the results 
displayed in figure A1. The corrected intensity is obtained using I

corr
(2θ,E) = I

obs
(2θ,E)/A

ssc 

where I
obs

(2θ,E) is the observed intensity. It is quite clear that there is a much stronger angle 

dependence for the correction factor of the slab geometry whereas the corrections are much 
less for the annular cell. Furthermore, an evaluation of the correction factor is impossible 

near the orientation angle, 130
o 

in the present example, for the slab geometry. Therefore it is 
advantageous to use an annular geometry for backscattering. Note that, because the beam 
goes through the sample twice on HFBS, the sample transmission due to the presence of 
absorption must be squared. 
 
 

Fig.A1: Scattering angle dependence of the shelf-shielding correction factor for (a) flat 
plate whose normal is oriented 130 degrees with respect to incident beam direction and 
(b) an annular sample geometry. 
 
 
When one increases the thickness of the sample for a system with a medium absorption 
cross-section the intensity will not significantly increase but the effects of multiple scattering 
will certainly be enhanced. Corrections for multiple scattering are not trivial and, for many 
systems in which the scattering function is not known a priori, may not be possible at all. 
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Figure A2 illustrates the effects that multiple scattering can have on a system, in this case 
viscous glycerol. This sample was measured on the IN10 backscattering spectrometer at the 
ILL at a temperature where the structural relaxation (viscous flow) is on the time scale of the 
instrument (0.1–1 ns). There is a clear broadening of the lineshape with increasing Q 

(FWHM ~ Q
2

) due to the dynamics of the system. However at Q = 0.19 Å
-1 

structural 
relaxation cannot be resolved because it is too slow at this small Q. The effective broadening 
in the wings is entirely due to multiple scattering. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.A2: Scattering intensity of viscous glycerol taken on the IN10 backscattering 
instrument illustrating the effects of multiple scattering on S(Q,ω). Solid line represents 
the instrumental resolution, open symbols are data taken at Q=1.4Å-1, and the closed 
symbols are data taken at Q=0.19Å-1 [A2].  
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Appendix B  

Instrument Characteristics for the High Flux Backscattering Spectrometer  

(http://www.ncnr.nist.gov/instruments/hfbs)  

Si (111) analyzers covering 20% of 4π steradians  

Si (111) monochromator 52 cm wide × 28 cm tall  

λ = 6.27 Å  

E
f 
=2.08 meV  

v
n 
= 630 m/s  

16 
3

He detectors covering 14
o 

< 2θ < 121
o 

 

Dynamic range:  

 

-36 μeV < ΔE < 36 μeV  

0.25 Å
-1 

< Q
EL 

< 1.75 Å
-1 

 

τ ≈ 0.05 – 10 ns  

Instrumental resolution:  

 

δE < 1 μeV (FWHM)  

δQ = 0.1 Å
-1

- 0.2 Å
-1 

 

Flux at sample:  

Φ ≈ 1.4 × 10
5 

n/cm
2

/s  

Beam size at sample:  

2.8 cm × 2.8 cm  

Signal to noise:  

400:1 for vanadium foil (10% scatterer)  

Sample environment:  

 

Furnace (300 K – 1700 K)  

Closed cycle refrigerator (5 K – 325 K)  

Closed cycle refrigerator (50 K – 600 K)  

Orange cryostat (1.5 K – 300 K) 
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  Fig.B1: Schematic of High Flux Backscattering instrument. 
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Appendix C  
 

Instrumental Resolution  
 

In an experiment with an ideal instrument we could measure the sample's scattering response 
directly. However real neutron spectrometers (and all measurement apparatus in general) 
have a finite resolution which tends to distort the measured distribution [C1]. The origin of 
the resolution distortion is due to many instrument-specific factors which lead to an 
accumulation of (hopefully small!) uncertainties. These uncertainties have the general effect 
of blurring the overall response. The effects of instrumental resolution often can be 
quantified in the instrumental resolution function. Mathematically, the resolution function 
and the intrinsic scattering function are convolved to yield the measured response. We 
present here an example of a convolution of two functions and the effects of the resolution 
width. 
 
In this example we assume that the resolution function, R(E), is a normalized Gaussian 
centered at zero, 
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and the intrinsic scattering function, S(E), is a triangle function centered at zero with a base, 
Δ, one unit wide (Δ=1) and unit height, 
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where θ(E) is the unit step function. 
 
The measured response, I(E), is given by the convolution integral, 
 

I(E)=R(E)⊗S(E) 
       =∫dE R(E-E)S(E)                                                                                                    C3 
 

where ⊗ denotes the convolution operation and the integral is over all values of E. When the 
Gaussian width parameter σ is small, the Gaussian approaches a delta function, and the result 
of the convolution looks very similar to the original triangle function. Figure C1 shows this 
result for a full-width at half maximum (FWHM) of 0.01. When the FWHM is larger, the 
resulting convolution product looks more distorted and blurred. Figure C2 shows such a case 
when the FWHM is 0.5. 
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Fig.C1: Result of the convolution of the triangle function with a Gaussian of FWHM of 
0.01. 
 
 
 

 
Fig. C2: Result of the convolution of the triangle function with a Gaussian of FWHM of 
0.5. 
 
Note that as R(E) becomes more narrow, the convolution product looks more like S(E). For a 
δ-function R(E), the convolution product is exactly S(E). Knowledge of the instrumental 
resolution function is essential for detailed lineshape analysis. Often this can be measured 
using an elastic scatterer. 
 
In many cases, the instrumental resolution can be measured directly and used in the model 
fitting procedure via the convolution product. If we measure the scattering function from a 
purely elastic scatterer (ignoring the angular or Q-dependence for now) then the measured 
quantity is directly proportional to the resolution function. In particular, the elastic scattering 
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function can be represented by a Dirac delta function with area A: S
EL

(E) = Aδ(E). When 

convolved with the resolution function, we get the measured response: 
 

Imeas(E)=A×δ(E)⊗R(E) = A× R(E)                                                                             C4 
 
Note that we must normalize the resolution function so that it has unit area. This is necessary 
so that we can extract the integrated intensity of the intrinsic lineshape, S(E), from the fit to 
the model. Since the integrated intensity of the convolution product of two functions is equal 
to the product of the areas of the two functions then, if one of the areas is unity (as in the case 
of a normalized resolution function), the other must be the total area of the measured 
intensity. 
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